Back to the Continuous Attractor Ábel Ságodi

In collaboration with Guillermo Martín-Sánchez, Piotr Sokół, Il Memming Park Champalimaud Centre for the Unknown

NeurIPS 2024

Internal compass representation in Drosophila

Neural activity Decoded in ellipsoid body orientation Pattern position (rad) PVA estimate (rad) -2 n 6 Adapted from Seelig & Jayaraman (2015) Time (s)

- Stable bump of activity on a ring
- Activity bump is maintained in dark
- Angular velocity integration

Kim et al. (2017) Green et al. (2017) Hulse et al. (2021)

Ring attractor: an internal compass model

- Bump is stable in absence of input (fixed point)
- Bump shifts with angular velocity input
- All bumps together form a ring
- Symmetric connectivity matrix

Skaggs et al. (1994) Zhang et al. (1996) Ermentrout (1998) Wang (2001) Compte (2006)

The fine-tuning problem

How can our mathematical models be so out of touch with biology?

Noise is omnipresent in biological systems

- Factors that affect brain dynamics:
 - Temperature, neuromodulators: e.g. alcohol
 - Constantly fluctuating synaptic weights
- Function in animals is not affected

• Continuous attractors are brittle

Averbeck, Latham & Pouget (2006) Shimizu *et al.* (2021) Fauth & Van Rossum (2019) Park, Ságodi & Sokół (2023)

Observation 1: Approximate ring attractors retain ring-like activity

- Ring attractors bifurcate into ring-like activity with different stability structures
 - **Ring attractor with few neurons** Noorman *et al.* (2024)
- Finite size approximations of ring attractors have the same bifurcation structure
 - Gaussian Skaggs et al. (1994), Zhang et al. (1996)
 - **Low-rank** Mastrogiuseppe & Ostojic (2018)
 - Embedding Manifolds with Population-level Jacobians Pollock & Jazayeri (2020)

Observation 2

Trained RNNs on the angular velocity integration task

PC3

- attractive ring
- **O** saddle
- stable fixed point

All networks have:

- Different stability structures (different number of fixed points)
- The neural activity is attractive onto a ring

Uniform norm of vector field bounds error

Approximate continuous attractor theory

Why are all these systems so similar?

1. Continuous attractors **persist**

2. Behavioral similarity ⇔ Configuration similarity

1. Persistence of continuous attractors

Explains why the perturbations to the ring attractor resulted in such similar dynamics

Fenichel (1971) Mañé (1978) Jones (1995) Simpson (2018)

2. Systems close to a ring attractor have small behavioral error

Explains why all task trained RNNs have attractive dynamics onto a ring

 $\Delta \coloneqq |\mathsf{vf}_{\mathsf{ca}} - \mathsf{vf}_{\mathsf{pert}}|$

Back to the continuous attractor

Abstract out the details of approximations of continuous attractors

- Zebrafish
 - heading direction
 - \circ self-location
- Aggression in mice

Potochnik (2018) Chirimuuta (2024) Nair *et al.* (2022) Petrucco *et al.* (2023) Yang *et al.* (2022)

Guillermo Martín-Sánchez

Piotr Sokół

Il Memming Park

Camera-ready: https://arxiv.org/abs/2408.00109

NeurIPS 2024 Poster Thursday December 12, 11:00-14:00

